关于如何调查匿名者,追寻永生的同类们,想法、思路大概都一样。
那么,作为永生之路上的后来者,能力又不太可能胜过所有的竞争者,找不到线索也很正常。
之所以出现这样的情形,无非是因为,在网络上调查一个id的身份和行迹,黑客的手段都差不多,人类的思维模式也多少会有相似之处;他方然能想到的办法,先行者差不多都会早一步想到、并采取行动。
但是ai的行动策略,某种程度上,就和人的思维不太一样。
对人工智能的研发认识有限,方然对ai应用于具体事务的原理也不甚了了,不过,既然aiasg能通过机器学习的方式逐渐模仿人的软件开发活动,那么原则上讲,使用类似的系统来模仿自己的搜索活动,应该也是可以的。
至于说,ai能够在这样的任务中发挥到什么程度,aiasg的表现可以作为对照:根据自己掌握的资料,在经历过一次大规模升级后,就在不久之前,开发团队在aiasg工作流程的一次梳理中,发现其具备了有限意义的创造性开发能力:在开发某服务器驻留程序时,面对某具体需求,系统自主完成了一段算法、并将其内嵌到软件中,而且这段算法,在aiasg的数据库中,是找不到的。
对给定的问题,提供算法,人工智能的这一进展是突破性的。
某种程度上,如果按某些研究者的观点,这甚至可以作为ai具有某种意识的证据,虽然系统实现的算法,在数据库中有若干相近的算法作为基础,但对这些算法进行组合、协调,用来解决全新的问题,这在以前完全是人类算法设计师才具有的能力,也是人类智慧独一无二的标志。
现在,哪怕只是解决简单的问题,ai自己也能做到。
对人工智能的这一进展,方然看在眼里,觉得有些不可思议,但眼下他没时间去探究这意味深长的突破,而是设法从国际商用机器的内部网络里,寻找aiasg开发过程中的项目资料,继而得到该项目的部分早期代码。
一边看代码,一边查开发文档,方然很快发现该项目的复杂度超乎想象,核心的人工智能模块没什么新意,倒是负责分析软件需求的部分,十分庞大而精密,这部分的代码也是最零散而不成系统的,好在对自己的设想而言,这部分用处并不大,于是他将意图组织、掩饰,然后发布到黑客论坛上。
自己开发可用的系统,耗费时间太长,方然索性将其发布为商业项目。
在ai大行其道,哪怕外行都能看出大趋势的今天,网络上人工智能相关的开发项目浩如烟海,混杂在大量类似的开发计划里,自动搜索分析的项目描述并不起眼。
在人工智能的应用难度上,搜索、分析数据,是相当基础的操作,最后还是要提交给自己来判断,这样的项目,规模并不太大,方然用新注册的id扮演承包商,向参与项目的兼职者支付报酬,大概在西历1472年初秋,得到了第一个可用版本。
初步测试软件,利用自动搜索分析器抓取信息,方然对ai的能力进行了评估。
将命名为asa的软件上线到第三方服务器后,每天抽一点时间查看日志,一周后,方然验证了自己的预测。
人工智能自动抓取数据分析的能力,没有想象中那么强,排除服务器计算资源的限制后,总体上还是要比他自己来做慢得多,收集到的讯息杂乱无章,即便经过筛选,也很难汇总成有条理的报告供人阅读。
但这只是系统第一次上线的表现。
在这之后,随着机器学习的进行,盘踞在代码中的神经网络架构逐渐熟悉了操作流程,搜索的准确率和速度都在提升,不仅如此,此前在aiasg运行中观察到的现象,也出现在了asa的行为模式里。
这也正是方然所需要的。
在网络上搜索、分析资料,做法,无非是截取数据并进行处理,这一点无论是人、还是程序来做,都只有速度和广泛度的区别。
但问题在于,面对互联网络上数以亿计的信息节点,数以万亿计的数据文件,乃至数以zb(十万亿亿字节)计的数据,如此庞大的数据量,没可能不加选择的进行分析处理,究竟要如何取舍,就十分棘手。
面对这种规模的问题,人和计算机的思路,并不一致。
面对数据量超出分析能力的情形,人的解决办法,往往是借助自身的经验、和已经掌握的线索,进行通过率极低的初步筛查,把百分之九十九点九的信息来源都排除在外,接下来,在实施数据截取、系统侵入时,又会进行类似的筛选,把有限的时间精力集中到最有可能取得突破的方向。
这样做,说好听点是更有针对性,说实话则是面对海量数据的妥协。
譬如方然自己,之前调查匿名者的时候,虽然尽可能的多方面收集讯息,但,再怎样拓宽口径,也不会去侵入汉堡王的结账系统,或者窥探汽车零部件供应商的库存数据,因为这些与匿名者行踪八竿子打不着的数据,没有任何搜查的必要。
但人工智能却不这么认为:凭借远超人类的处理能力,ai更倾向于采用广种薄收的策略。
每天查看asa系统的分析报告,经过几个月的训练,方然认为这一系统已具备了实战能力,考虑再三,他又花费时间将核心代码内嵌到伯克利大学自然科学部的服务器里,以学术数据搜集与分析系统的名义来运作。
项目部署完毕,在秋天的伯克利,方然每天的日程就多了一项内容,基本上,不论在实验室还是在寝室里,他都会打开监视器,用旁观者的视角去审视asa的行为,一来是扮演嗅探者的角色,评估这一系统、乃至隐藏于幕后的自己被发现的风险,二来也可以更客观的观察人工智能的数据搜集策略。
上线不久,自动搜索与分析系统的表现,就出乎了方然的意料。
第122章 第一二〇章 分析(auzw.com)没有自主意识的计算机,即便顶着人工智能的名头,按理说,也无法与人的思维相比,这是方然以往的看法。
但话说回来,自我意识究竟是什么;查看asa提交的分析报告,并观察这一软件在网络上的行为特征,方然心生疑惑,他偶尔还禁不住会想,所谓ai的自我意识这种东西,究竟是不是如人工智能领域的专家们所说的那样,是人类短时间内无法触及的成就。
眼前,屏幕上的整齐字迹,就在透露出某种意识的迹象:几个月来学习方然的工作模式,正式上线后,asa系统一开始的调查速度并不快,在旁观者看来,就好像初次接入互联网络,在试探、熟悉周遭环境那样;接下来,按常规思路,asa尝试外联若干已知的数据节点,同时从安全措施薄弱的服务器拉取信息列表,显然是为后续的信息获取做准备。
这些步骤,和人的行动模式差不多,只是效率更高。
基础科学部的计算资源,大部分依赖伯克利的公共大型机,必然有算力波动,作为后台程序的asa展现出一定的智能性,会在网络空闲时大量截取数据,算力空闲时集中解密、分析处理,在存储空间紧张时则进行一次垃圾收集,很好的平衡了算力、带宽和空间,扪心自问,方然承认这是他做不到的。
即便这些工作的技术原理并不复杂,问题在于,人并没有ai那样强大的计算和记忆能力,即便清楚原理也做不来。
观察asa的行为,对方然来说,逐渐成为一种略带消遣的日常工作。
但重要的还是分析结果,和看似有序的行为不同,asa的报告,却让方然怀疑系统是不是出了什么问题:站在人的立场,asa在初始化后调取的数据,岂但是杂乱无章,有时候简直就是毫无道理,原本布置了追踪匿名者的任务,但是在从联邦公民信息系统(外联接口)和联邦电信节点获取大量数据后,软件就进入了四处开花的工作模式,开始侵入诸如宾夕法尼亚医疗结算中心、孟山都物流体系第143a7检查点、东太平洋水文气候监测站,甚至nasa俄勒冈射电观测阵列这些不知所云的机构。
在联邦调查一个人的行踪,固然需要大量数据,但真的需要这些风马牛不相及的东西吗。
建立在人工智能内核之上的asa,一旦开始运行,身为管理员也只能看到若干接口送出的数据,对庞大软件架构内部的运行情况,即便动用能拿到手的最先进动态监控模块,面对规模超乎想象的状态码、存储器数据和访问日志,方然也只能徒唤奈何。
想一想也是,倘若这系统正在做的事,居然能被人通过接口数据分析的清楚明白,那他又要这asa何用呢,干脆自己操纵还更保险。
开发软件,部署人工智能系统,作为ai的创造者、至少也是参与了工作的使用者,却无从掌握人工智能体系的具体运作,基于过往的积累,在与asa打交道的过程中,方然对这类系统的黑盒子性质有了更直观、更深刻的理解,也部分理解了为什么一部分计算机、人工智能研究者,始终对ai心怀恐惧。
人创造出来的东西,却未必能被人控制,人工智能,原则上是存在这样的可能。
开发人工智能的直接动机,很显然,倘若不是出于莫须有的研究意识、甚至百无聊赖之类理由,显然是为了解放人的辛劳,是为了利用人工智能去解决人类难以解决、甚至无法解决的问题,那么从逻辑上讲,对复杂度越过某种门槛的ai,运作过程必定不是人能够完全解析的。
这种不能够,并非理论上的做不到,而是解析的时间会长到脱离实际,根本就不现实。
想到这,方然不是在杞人忧天,认为人类创造的ai会脱离控制、自作主张,而是说作为人工智能的使用者,对ai正在做什么,并没办法有很切实的把握。
这对系统开发者来说并不成问题,但是对使用者,则潜藏着这样的风险:对ai的实际行为,不管开发者怎样声称、怎样保证,都没办法验证这些声称、保证究竟是真的靠谱,还是完全的欺骗。
归而总之,还是此前想到的那一个难题:除非开发者主动放弃,否则,对复杂度超限的系统,没有任何百分之百可靠的手段,可以确保除开发者之外的任何人将其完全掌控。
思考着asa的行为,权限不可转让的猜想,再度浮现于方然的脑海。
但他想了又想,还是无法给出证明。
幸好现在还无关紧要,至少对asa,身为开发者的自己并不担心它会失控,方然就暂且将猜想放到一边,他仔细观察自动化搜索与分析系统的日志,结合每天的分析报告,逐渐洞悉了这系统的运行规律。
看起来,正仿佛一个物理意义上的大脑,asa的运行思路,恰似人脑。
这种相似性,与自我意识的讨论无关,而是说眼前的人工智能在处理问题时,采取的广泛尝试、不断反馈的策略,与人脑在面对问题时的工作方式很相似。
想象一个人,在尝试解决试卷上的数学题时,究竟是怎样思考,想出办法呢;大脑的思考过程,人皆有之,却好似很难用语言来清晰描述,教师指导学生,也往往是泛泛的认真想一想、换个思路想,其实这时候大脑究竟在做什么呢,无非是利用以往积累的神经突触网络,发动神经刺激,将所有可能涉及到题目、可能给出解决方案的神经连接路径都尝试一遍而已。
这过程中,绝大多数路径都指向否决,极少数路径一时没有被判无效,或许,还会连通到逻辑关联的其他路径,运气好的话,在经历难以想象的繁复生物电过程后,大脑会半回顾、半新创的给出一条可行路径,问题才得以解决。
这种过程,在人工智能领域,似乎就是所谓的神经网络。